Creating ANVA API based Customer Apps
Partner Documentation

VERSION : 1.13

Table of Contents

Table of Contents
Aims

Integration prerequisites
Registering a New OpenlD client in ANVA Hub
Creation of Customer Accounts

Authorization and Authentication
The Authorization Request
The Authorization Process
The Authorization Response

Refresh Token
The Refresh Token Request
Succesful Refresh Token Response

Client Credentials Flow
The Access Token Request
The Client Authentication Process
The Token Response
Token Error Response

Using the token for API access

The Customer API Endpoints
Account Details
Organisation Details
Permission Details
List of Contracts
Contract Details

Error Messages

Hub Activities
Client Creation
Customer Account Creation

Discovery (Well-Known) Endpoint
OpenID Provider Configuration Request

Successful OpenlID Provider Configuration Response

OpenID Provider Configuration Error Response

JWKS URI Endpoint
JWKS Request

o N O oot o1~

10
10
10

12
12
12
13
13

15

16
16
16
17
17
18

19

20
20
23

25
25
25
27

28
28

Successful JWKS Response
JWKS Error Response

Userinfo Endpoint
Userlnfo Request
Successful Userinfo Response
Userinfo Error Response

JWT Token Sighing

28
28

29
29
29
31

32

Aims

This document provides insights to third party partners and integrators to integrate the ANVA APIs
to their customer centric custom applications. For authentication and Authorization of users and
proper access of the designated endpoints- the partners and integrators are expected to follow
the prescribed ANVA OpenliD flows- and this document also provides the required information for
the partners to integrate the ANVA OpenlID flows into their apps.

Integration prerequisites
Before starting the process of integration with the ANVA APIs, it is necessary to have the following
processes completed:

Registering a New OpenlD client in ANVA Hub
All access to ANVA APIs is restricted only to registered valid client applications. The Organisation
Admin can register (create) a new client in the hub platform for his Organisation. While creating
the client , the following points should be considered :

1. The provided redirect URLS should be valid.

2. The Client should have Authorization Code Grant Type enabled.

3. The proper Organisation has to be chosen from the list

4. The Customer scope should be selected as a scope for the client.
Once the client is registered, the hub platform would display a Client ID and Client Secret for the
newly created client . These two values will be required in the implementation along with the
provided redirect URLSs.

Creation of Customer Accounts

Once the client is created, the next process is to create user accounts for the Organisations
customers (Contacts). This can also be done from the ANVA Hub Platform by the Advisor . While
creating a customer account for a customer, the Advisor has to key in an email id (in case the
contact information does not include an email) - and this email becomes the login username for
the corresponding customer account. Once created, the Hub also allocates and displays a
temporary password for the user account which has to be passed on along with the username
(email) to the customer. For testing the full flow of integration, at least one customer account is
necessary.

NOTE: A more detailed description of the Client Creation and Customer Account Creation in the
ANVA hub platform is provided in the Hub Activities section of the document.

Authentication and Authorization

The Authentication and Authorization follows the OpenID standards and on successful
completion of the authentication process, a valid ID Token is returned to the provided redirect
URL in the request. For Partner app clients- the recommendation is to use the Authorization
Code Flow or the Implicit Flow.

The Authorization Request
The Authorization request can be made at the designated authorization endpoint.

Endpoint : /identity/authorize
Method : GET
Query Parameters : The following parameters are to be passed in the Query String

1.
2.
3.

client_id- The Client ID of the registered client
redirect_uri- A valid redirect URL associated the client
response_type- use code for authorization code Flow or Use 'token', 'id_token' or
'id_token token' for Implicit Code Flow. If 'id_token' is used only the id_token will be
returned in the redirect url and if 'id_token token' is used both the access_token and
id_token are returned in the redirect url."
scope- use openid Customer for client apps
state- any custom value that needs to be fetched back in the response
nonce- any custom value that needs to be present as a claim in JWT. This parameter
is mandatory for Implicit Flow.
max_age- an optional value to specify the longevity of the generated token in seconds
response_mode - an optional value to specify the method that should be used to send
the resulting Authorization Endpoint Response. Use response_mode as 'query' for
encoding Authorization Response parameters in the query string or Use response_mode
as 'fragment' for encoding Authorization Response parameters in the fragment string.
prompt- It is an optional parameter.

Defined values in Prompt Parameter are:

e none- The Authorization Server MUST NOT display any
authentication or consent user interface pages. An error is
returned if an End-User is not already authenticated or the Client
does not have pre-configured consent for the requested Claims or
does not fulfil other conditions for processing the request.

e login- The Authorization Server SHOULD redirect the end-user
to the login page. If it cannot reauthenticate the End-User, it
MUST return an error, typically login_required.

e consent- The Authorization Server SHOULD redirect the end-
user to the consent page. If it cannot obtain consent, it MUST
return an error, typically consent_required.

login and consent can be used together as a prompt parameter. none
can not be used with other values, otherwise an error is returned.

NOTE : If openid is not passed as a scope, the system will not return an ID Token at the end of
a successful Authorization process , but will only return OAuth 2.0 compliant access tokens.

Example Requests
For Implicit flow an example request would be :
/identity/authorize?response type=token/id token
&scope=openid Customer
&client id=<Your Client ID>
&state=test state
&redirect uri=<Your Redirect URL>
&nonce=<Your Nonce String>
&max age=<Your Desired Longivity Of Token>
&response mode=<Your Desired Response Mode>
&prompt=<Your Desired Prompt Value>

For Authorization Code Flow an example request would be:
/identity/authorize?response type=code
&scope=openid Customer
&client id=<Your Client ID>
&state=test state
&redirect uri=<Your Redirect URL>
&nonce=<Your Nonce String>
&¢max age=<Your Desired Longivity Of Token>
&response mode=<Your Desired Response Mode>
&prompt=<Your Desired Prompt Value>

The Authorization Process

Every successful request to the Authorization endpoint redirects the calling client’s browser to
present the login page - where the customer user has to login with the provided account
credentials (refer to creation on customer accounts section in the prerequisites). After the user
credentials are validated - a change password screen is presented (as all customer accounts
are assigned a temporary system generated password) , where the user has to enter the
assigned password and the desired new password and save the new password. Once that is
done and validated by the system ,the user is again sent to the login page to login with the
changed password. Once the login is successful -the user is presented with a consent screen
informing the user about the user information that will be passed on from the Anva Platform to
the client app and asks the user to provide a consent or decline. Once the user gives consent,
the response is redirected to the redirect URL provided in the Authorization request. The
response contains an Authorization code (if the request was for Authorization code flow) or an
ID Token (if the request was for the Implicit flow).

The Authorization Response
The Authorization response can be of two types depending upon the response_type (Flow type)
value provided in the Authorization request.
Implicit Flow (response_type =token or id_token)
The implicit flow response returns an ID Token in JWT format along with the scope value
passed in the request. The response is as follows if no response_mode is specified in the
Authorize Request (i.e default as” fragment”) :
<Redirect URL>#id token=<Your ID Token>
&access_ token=<Your OAuth Access Token>
&state=<Your Original State value>

The response is as follows if response_mode as “query” is specified in the Authorize Request:
<Redirect URL>?id token=<Your ID Token>

&access token=<Your OAuth Access Token>
&state=<Your Original State value>

Authorization Code Flow (response_type= code)

The Authorization code flow response returns an Authorization Code along with the scope value

passed in the request. A sample response is as follows if no response_mode is specified in the

Authorize Request (i.e default as” query”):-

<Redirect URL>?code=<Your Authorization Code>
&state=<Your Original State value>

The response is as follows if response_mode as “fragment” is specified in the Authorize

Request

<Redirect URL>?code=<Your Authorization Code>
&state=<Your Original State value>

It is important that the users use the access_token for accessing resources and not the
id_token. Only use the id_token value to get information about the authenticated user.

Getting the token from the Authorization Code (Authorization Code Flow)

The Authorization response for Authorization code flow returns an Authorization code. This
authorization code has to be used to fetch the ID token. This can be done by making a request
to the token endpoint as follows:

Endpoint : /identity/token
Method : POST
Headers : The following request headers are to be added:
1. Authorization: Basic Authorization by creating a Base64 encoded string of the Client ID
and Client Secret in the format <Your_Client_ID>:<Your_Client_Secret>. The
Authorization header value should be in the following format to be valid

‘Authorization’: ‘Basic <Your Base64 Code>'
2. Content Type : should be application/x-www-form-urlencoded. The header should be
'Content-Type’: 'application/x-www-form-urlencoded'

Request Body : The following parameters are to be passed in the Request Body:

1. grant_type - should be set to authorization_code

2. redirect_uri - A valid redirect URL associated the client

3. code - The Authorization code in the Authorization response

4. client_id - The Client Id for the Client. [If not in the Authorization Header.]

5. client_secret - The Client Secret for the client. [If not in the Authorization Header.]
In response to a valid token request with the proper authorization code, the token endpoint
returns an ID Token to the provided redirect URL similar to the Implicit Flow response and
refresh token that is used to generate a new access token.
NOTE : The Authorization code is only valid for 10 mins only from consent.

Refresh Token

The Refresh Token grant type is used by clients to exchange a refresh token for an access
token when the access token has expired.

The Refresh Token Request
To refresh an Access Token, the Client must authenticate to the Token Endpoint using the
authentication method.

Endpoint: /identity/token
Method: POST
Headers:
The following request headers are to be added:
1. Authorization: Basic Authorization by creating a Base64 encoded string of the Client
ID and Client Secret in the format <Your_Client_ID>:<Your_Client_Secret> The
Authorization header value should be in the following format to be valid

‘Authorization’: ‘Basic <Your Baset4 Code>’
2. Content Type : should be application/x-www-form-urlencoded. The header should be
'Content-Type’: 'application/x-www-form-urlencoded'

Request Body: The following parameters are to be passed in the Request Body :
1. grant_type - should be set to refresh_token
2. refresh_token - Same as the value of refresh token during last generated access token.
3. client_id - The Client Id for the Client. [If not in the Authorization Header.]
4. client_secret - The Client Secret for the client. [If not in the Authorization Header.]

Successful Refresh Token Response
For every valid request to the Token endpoint, the identity component issues an access token

(id_token) and refresh_token along with token_type and expires_in parameters in the response
body.

The response is as follows :

Headers: The following response header fields are to be added:
1. Content-Type : Response body content should be in ‘application/json’ format, with a
character encoding of UTF-8.
‘Content-Type’: ‘application/json;charset=UTF-8'
2. Cache-Control : HTTP ‘Cache-Control’ response header field, with a value of ‘no-
store’.
‘Cache-Control’: ‘no-store’
3. Pragma: HTTP ‘Pragma’ response header field, with a value of ‘no-cache’.
‘Pragma’: ‘no-cache’

Response Body: The following parameters are passed in the Response Body :
1. id_token - ID Token value associated with the authenticated session.

10

2. access_token - The access token issued by the authorization server.

token_type - The type of the token as Bearer.

4. refresh_token - The refresh token issued by the authorization server every time an
access_token is requested.. This refresh token can be used to generate a new access
token when the previous access_token has expired.

5. expires_in - expiry time of the ID token

w

Users are required to use the access_token for accessing resources from the server.

NOTE : Users will get a new refresh token each time a new access token is requested. Once the
refresh token is used it is invalidated.

11

Client Credentials Flow

The Client Credentials Flow follows OAuth 2.0 standards and on successful completion of the
client authentication process, a valid Access Token is returned to the client. In ANVA Identity
Component, Client Credentials Flow is used by Internal Clients.

The Access Token Request

The Access Token request can be made at the designated token endpoint.

Endpoint: /identity/token

Method: POST

Headers: The following request headers are to be added:

1. Authorization: Basic Authorization by creating a Base64 encoded string of the Client ID
and Client Secret in the format <Your_Client_ID>:<Your_Client_Secret>. The
Authaorization header value should be in the following format to be valid
‘Authorization’: ‘Basic <Your Base64 Code>’

2. Content Type: Should be application/x-www-form-urlencoded. The header should be
'Content-Type’: 'application/x-www-form-urlencoded'

Request Body: The following parameters are to be passed in the Request Body :

1. grant_type - Should be client_credentials
‘grant type’: ‘client credentials’

2. client_id - The Client Id for the Client. [If not in the Authorization Header.]

client_secret - The Client Secret for the client. [If not in the Authorization Header.]

4. scope or scopes - The scopes of the access request along with organisation code as
orgCode:<orgCode> or organisation GUID as orgld:<orgGUID>; optionally, on behalf
of username field to be added for adding the username in the access token as
onBehalfOfUsername:<username>. The use of scopes parameter will be replaced by
the scope in the near future.

‘scope’: ‘Basic orgCode:<orgCode>/ orgld:<orgGUID> {either

w

orgCode or orgld to be used} onBehalfOfUsername:<username>’

Note: OrgCode will fade out in the near future thus use of orgld is preferred.
In response to a valid token request with the proper grant type and scope, the token endpoint
returns an Access Token to the client.

The Client Authentication Process
The client id retrieved from the encoded header is validated against the database. Once that is
successful, the following validations are done with the fetched client.

Once a valid client is fetched the client secret is matched.
If both the above steps are successful then it is checked if the scopes specified are
present with the client.

e And finally it is checked if the client has access to the requested organisation.

12

The Token Response
Once the client authentication is successful. The process of generating the token begins.

The required claims are put in the token. The type of the token is “System”.

The scope claim contains the intersection of the scopes provided and the scopes available with
the client.

Then finally the token is sent to the user via the response body.

Successful Token Response
For every valid request to the Token endpoint, the identity component issues an access token

(id_token) along with token_type and expires_in parameters in the response body. The
response is as follows :

Headers : The following response header fields are to be added:
1. Content-Type: Response body content should be in ‘application/json’ format, with a
character encoding of UTF-8.
‘Content-Type’: ‘application/json;charset=UTF-8'
2. Cache-Control: HTTP ‘Cache-Control’ response header field, with a value of ‘no-
store’.
‘Cache-Control’: ‘no-store’
3. Pragma : HTTP ‘Pragma’ response header field, with a value of ‘no-cache’.
‘Pragma’: ‘no-cache’

Response Body: The following parameters are passed in the Response Body:
1. access_token - The access token issued by the authorization server
2. token_type - The type of the token as Bearer.
3. expires_in - Lifetime in seconds of the access token.

Token Error Response
If the token request fails client authentication or is invalid, the authorization server returns an
error response.

Headers: The following response header fields are added:
1. Content-Type : Response body content should be in ‘application/json’ format, with a
character encoding of UTF-8.
‘Content-Type’: ‘application/json;charset=UTF-8’
2. Cache-Control : HTTP ‘Cache-Control’ response header field, with a value of ‘no-
store’.
‘Cache-Control’: ‘no-store’
3. Pragma : HTTP ‘Pragma’ response header field, with a value of ‘no-cache’.
‘Pragma’: ‘no-cache’

Response Body : The following parameters are passed in the Response Body :
1. error- A single error code. For details, check the Error Messages table below.

13

Error Messages For Client Credentials Flow:

Endpoint Error Details

/identity/token invalid_grant The client does not support client
credentials flow.

/identity/token invalid_scopes The client does not have access
to one or more of the scopes
specified in the request.

/identity/token invalid_organization The provided organisation code
does not exist for this client.

/identity/token invalid_client The given client-id does not exist.

14

http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize

Using the token for APl access
Once the client receives an ID Token in JWT format , it can be used to access the Customer

API endpoints , by passing it in the Request Headers in the following way:
‘Authorization’: ‘Bearer <Your JWT Token>’

Requests without the Authorization header will be considered as unauthorised access requests
and will get an unauthorised access error response.

15

The Customer API Endpoints

The customer API endpoints provide a valid customer account holder to get information about
his account details, organisation associations, permissions as well as enable the user to fetch
the list of contracts and the details of each individual contract. The available endpoints are as
follows:

Account Details

This endpoint provides the details of the customer user’s account. The request requires an
Authorization header as described in the using of token for API access section

Endpoint: /account/mine
Method: GET
Response: The response is in the following JSON format :
{
"data": |
"items": [
{
"id": <account-id>
"name": <username email-for-customer>
"email": <email>
"firstName": <firstname>
"middleName": <middlename>
"lastName": <lastname>
"dossiers": {
<organization id>: <doessiers number>
I
"groupIds":

Organisation Details

This endpoint provides the details of the Organisations associated with customer user’s
account. The request requires an Authorization header as described in the using of token for
API access section

Endpoint: /organization/organizations/mine
Method: GET
Response: The response is in the following JSON format:
{
"data": {

16

"items": [

"id": <organization_id>
"type": <type>
"code": <code>
"name": <name>
"icon": <icon>

Permission Details

This endpoint provides the details of the permissions associated with the customer user’s
account. The request requires an Authorization header as described in the using of token for
API access section

Endpoint: /permission/permissions/mine
Method: GET
Response: The response is in the following JSON format :
{
"data": {
"items": |
<permission_1>,
<permission_2>

List of Contracts
This endpoint provides the list of the customer’s contracts. The request requires an
Authorization header as described in the using of token for API access section

Endpoint: /contract/contracts/mycontracts

Method: GET

Response: The response is in the following JSON format :

{
"data": {
"items": [
{

"id": <contract_id_1>
"dossierNumber": <dossierNumber_ 1>
"format": <contract_format_ 1>
"metadata": { <contract metadata 1>},

17

"status": <contract_status_1>
I

"id": <contract_id_2>,
"dossierNumber": <dossierNumber 2>,
"format": <contract_format 2>,
"metadata": { <contract_metadata 2>},
"status": <contract_status 2>

Contract Details

This endpoint provides the details of a particular customer contract. The request requires an

Authorization header as described in the using of token for API access section

Endpoint: /contract/contracts/<requested _contract_id>/mine

Method: GET

Response: The response is in the following JSON format:

{
"data": {
"items": [
{

"id" : <requested_contract_id>,
"dossierNumber" : <requested_dossierNumber>,
"format" : <requested_contract_format>,
"metadata" : { <requested_contract_metadata> },
"status" : <requested_contract_status>

by

18

Error Messages

All API requests are validated to check if all the required input parameters have been provided.
In case of an error, the API returns the following error messages

Endpoint Error Code Details
/identity/authorize invalid_scope The client does not have one or
scopes specified in the request.
/identity/authorize invalid_client The given client-id does not exist.
/identity/authorize request_uri_not_support | When the specified request uri is
ed not associated with the client.
/identity/token invalid_grant The client does not support auth
code flow.
/identity/token invalid_code If the code has been used or is
invalid.
<redirect uri>?error= client_scopes_does_not | The scopes of the user and the
_match_with_the_user_ | scopes requested during
scopes authorization have none in
common.

19

http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize
http://localhost:8129/identity/authorize

Hub Activities

As discussed earlier in the the Integration Prerequisites section- the ANVA Hub Platform has to
be used for Creation of the Clients and Customer Accounts. This section gives a detailed
overview of the process of these activities.

Client Creation
To create a client one needs to login to the Hub with Organisation Beheerder (Admin of an
organisation) privileges. The following steps are to be carried out in the Hub Platform:

1. Organisation beheerder will get a button in My Organization nhamed, that navigates to the
Client List page.

Q:-- - £ 0

2 Relaties @ Anva Organization SNELKOPPELINGEN
B orgenisaties & Contact @ Adressen ¥ Bronnen & Relaties (& Postbus o Safebay
Il Gebruikers
L4l Rapportages
ORGANISATIEGEGEVENS CONTACTGEGEVENS
Naam * Telafoonnummer | B sencer client ‘

Release notes

B Overeenkomsten Anva Organization| |

POR-Code

HIS-Nummer Weosite

Premie-incazzometnade

BEDRIJFSREGISTRATIEGEGEVENS

APM-vergunningsnummer

B Opslaan Terug

B organisaties
Client ID Name Radiract URLs Grant Types Verwijder

Il Gebruikers
d8dfec04-af62-4a67-2240-2a29c0caeTad Anva Organization htip:iclient anva.nl:3000/redirect authorization_code]

Release notes

B Overeenkomsten

20

3. Provide information about your client: Client name, redirect urls.

Q- v v K @)

2 rRelaties E Nieuw client aanmaken

Organisatie:
ﬂ S CLIENT DETAILS REDIRECT URLS
Il Gebruikers

Client Name

Release notes
Description

B Overeenkomsten

ORGANISATIES TOEWIJZEN
Selecteer de organisaties waar gebruikers mogen inlaggen bij deze client

+ Anva Organization

SCOPES TOEWIJZEN

Selecteer het scopes dat aan de cliént is loegewezen:

Client organisations, client scope and grant types

Q- v v K @)

| A

2 Relaties

H organisaties
ORGANISATIES TOEWIIZEN
Il Gebruikers
Selecteer de organisaties waar gebruikers mogen inloggen bij deze client

~ Anva Organization

Release notes

B Overeenkomsten
SCOPES TOEWIJZEN

Selacteer het scopes dat zan de client is toegewezen

GRANT TYPES TOEWIMZEN

Selecteer de subsidietypen die aan de client 2ijn toegewezen

Terug

Click “Opslaan” to create client

21

Standaard wordt het ANVA Hub logo getoond.

anva

Relaties

8 Flow

Postbus

& Machtigingen
Q

Safebay

MICROSOFT 365 Access Token Expiry Time (in seconden) Refresh Token Expiry Time (in seconden)

& E-mail

HUBDATE

Hubdate
Nieuws
Roadmap

Selartaar da arnanicatios waar nahriikars manan inlanasn ki daza Onani clisnt

: Releasenotes

Terug
Help

Access Token Expiry Time (Optional field) and Refresh Token Expiry Time (Optional
field), these two fields can customize the lifetime access of tokens. The values should be
entered in seconds.

For Example- Access Token Expiry Time is 1200 (in seconds) then the maximum expiry
time of access token will be 1200 (20 mins).

The range of Access Token Expiry Time - 900 (15 mins) to 36,000 (10 hrs)

The range of RefreshToken Expiry Time - 900 (15 mins) to 3,153,600 (365 days)

If no value is passed in these two fields then by default Access Token Expiry Time will
be 36,000 (10 hrs) and Refresh Token Expiry Time will be 36,600 (10 hrs 10 mins).

4. Newly created client information shows here.

& Relaties E Anva Organization

[Orgenissties Client ID

Wl - d8dfBc04 af62 4267 2240-2a29c0cacTad
Client Sacret

f<]
HiNBNCiGYxGbJLIUYKZWMJICboSQJf K
(@ Release notes CLIENT DETAILS REDIRECT URLS

B Overeenkomsten Client Name Redirect URLs.

Anva Organization ‘

http://client anva nl:3000/redirect

D

+ Voeg een rediract URL toe

ORGANISATIES TOEWIJZEN

Selacteer de organisaties waar gebruikers mogen inlaggen bij deze client

B Opslaan Terug

NOTE : For creating Partner Clients it is necessary to set the specific values mentioned in the
Registering a New OpenlID Client in ANVA Hub section of this document.

22

Customer Account Creation

To create Customer Accounts, it is necessary to login to the Hub Platform with either
Organization Beheerder or Relatiebeheerder privileges. For Customer Account creation, the

following steps are to be followed:

1. Beheerder has to visit any Contact Details page, where in right panel a button “Account
toevoegen” will be available(If the contact does not have an Account yet).

G 8 v Typ de naam van een relatie en druk op enter

& A.H. Schuitema

B Contracten B Aanviagen & Documenten [Notiies Tl Safebay

Contract Incasso Laatst aangepast

/56121-10000858913
Lopend £67,66 28 aug. 2019

Verzekeringspakket alle Producten

/ 56121-10000858913
Lopend €2333 25 jul. 2019

Verzekeringspakket alle Producten

Acties

Anva Organization v f 9

RELATIEGEGEVENS

@ status

Onbekend

Q Adres

Lambert Heijnricsstraat 18 D

3B17ES Amersfoort

mail@mail.com

SNELKOPPELINGEN

Lul - Rapportages

B Nieuw contract

% ANVA Backoffice

[+ Account toevoegen

2. By clicking that button a popup will open which has an option to input the Email (By
default it will be filled with the contact email, if any) for the contact. This email will be the

username of the newly created Customer Account.

Contact toevoegen aan account

Email

mail@mail.com

23

3. By submitting this form a Customer account will be created for that contact, where the
username will be the email id provided, and a Temporary password will be generated.
The username and temporary password will be the login credentials for the first login.

Contact toevoegen aan account

Emai

mail@mail.com

B Opsiaan

~6jR$AMU"3jV# IE%3IF

+ Letopr ditis een tjdeljk wachtwoord dat maar 1 uur geldig is. Stuur het dus direct naar de
gebruiker, via c De gebruiker moet het het
I n eigen

4. Once an account is created successfully for any contact then on the Contact Details
page for the contact “Account toevoegen” button will no longer be available. Instead of
that, Account Username(Email) will be available as an info.

G ava Anva Organization & ‘ 9
. H
& A.H. Schuitema RELATIEGEGEVENS
Bi Contracten [Aanwiagen Bs Documenten [Notities Tl Safebay @status
_ o
Q Adres
Contract Incasso Laatst aangepast Acties

Lambert Heijnricsstraat 18 D
3B17ES Amersfoort
/ 56121-10000858913
= -mail
Lopend £67,66 28 aug. 2019 7
mailk@mail.com

B Account
mailzmailcom

SNELKOPPELINGEN

Verzekeringspakket alle Producten

25 jul. 2019 a

Ll Rapporiages

B+ Nieuw contract

& ANVA Backofiice

Discovery (Well-Known) Endpoint

OpenlID Connect defines a discovery mechanism, called OpenID Connect Discovery, where an
OpenliD server publishes its metadata at a "well-known" URL. This URL returns a JSON listing
of the OpenID/OAuth endpoints, supported scopes and claims, keys used to sign the tokens,
and other details. The clients can use this information to construct a request to the OpenID
server, i.e., the Identity component.

OpenlID Provider Configuration Request

An OpenlID Provider Configuration endpoint MUST be queried using an HTTP GET request.

Endpoint : /identity/.well-known/openid-configuration
Method : GET

Successful OpenlID Provider Configuration Response

A successful response MUST use the 200 OK HTTP status code and return a JSON object
using the application/json content type that contains a set of Claims as its members that are a
subset of the Metadata.

Response Body : The following parameters are passed in the Response Body-
1. issuer - The URL that the OpenID Provider, i.e., the Identity component asserts as its
Issuer Identifier. (https://api.anva.live/identity)
2. authorization_endpoint- The URL of the Identity component’s OAuth 2.0
Authorization Endpoint. (https://api.anva.live/identity/authorize)
3. token_endpoint- The URL of the Identity component’s OAuth 2.0 Token Endpoint.
(https://api.anva.live/identity/token)
4. Userinfo_endpoint - The URL of the Identity component’s Userinfo Endpoint.
(https://api.anva.live/identity/userinfo)
5. jwks_uri- The URL of the Identity component’s JSON Web Key Set [JWK] document.
(https://api.anva.live/identity/.well-known/jwks)
6. scopes_supported- JSON array containing a list of the OAuth 2.0 scope values that
the Identity component supports. (openid, profile, email, Basic, Customer)
7. response_types_supported- JSON array containing a list of the OAuth 2.0
response_type values that the Identity component supports. (code and token)
8. response_modes_supported- JSON array containing a list of the OAuth 2.0
response_mode values that the Identity component supports. (query)
9. grant_types_supported- JSON array containing a list of the OAuth 2.0 Grant Type
values that the Identity component supports. (authorization_code and client_credentials)
10. subject_types_supported- JSON array containing a list of the Subject Identifier
types that the Identity component supports. (public)
11.id_token_signing_alg_values_supported - JSON array containing a list of the
JWS signing algorithms (alg values) supported by the Identity component for the ID
Token to encode the Claims in a JIWT [JWT]. (RS256)
12. token_endpoint_auth_methods_supported- JSON array containing a list of Client
Authentication methods supported by the Token Endpoint. (client_secret_basic)

25

13. token_endpoint_auth_signing_alg_values_supported- JSON array containing a
list of the JWS signing algorithms (alg values) supported by the Token Endpoint for the
signature on the JWT [JWT] used to authenticate the Client at the Token Endpoint for
the private_key_jwt and client_secret_jwt authentication methods. (RS256)

14. claim_types_supported- JSON array containing a list of the Claim Types that the
Identity component supports. (normal)

15. claims_supported- JSON array containing a list of the Claim Names of the Claims
that the Identity component shall be able to supply values for. (sub, iss, aud, jti, iat, exp,
nonce)

Sample Successful Response :-
{
"issuer": "http://localhost:8129/identity",

"authorization_endpoint": "http://localhost:8129/identity/authorize",
"token_endpoint": "http://localhost:8129/identity/token",
"userinfo_endpoint": "http://localhost:8129/identity/userinfo"
"jwks_uri": "http://localhost:8129/identity/.well-known/jwks",
"scopes_supported”: [

"openid",

"Profile",

"Email",

"Basic",

"Customer"
1
"response_types_supported”: [

"code",

"token",

"id_token",

“id_token token”
1
"response_modes_supported": [

"query"
1
"grant_types_supported”: [

"authorization_code",

"client_credentials",

“refresh_token”

"subject_types_supported": [
"public"
1s

26

"id_token_signing_alg_values_supported": [
"RS256"
1
"token_endpoint_auth_methods_supported": [
"client_secret_basic",
“client_secret_post”
1
"token_endpoint_auth_signing_alg_values_supported": [
"RS256"
1
"claim_types_supported": [
"normal”
1
"claims_supported": [
"iss",
"sub",
"aud",
it
"jat",
“exp”,
"nonce",
“auth_time”,
“at_hash”

OpenlD Provider Configuration Error Response
An error response uses the 404 Not Found HTTP status code value.

27

JWKS URI Endpoint

This endpoint renders the Identity component’'s JSON Web Key Set [JWK] document. This
contains the signing key(s) the Relying Party uses to validate signatures from the ldentity
component.

JWKS Request
An OpenlID Provider JWKS URI endpoint MUST be queried using an HTTP GET request.

Endpoint: /identity/.well-known/jwks
Method: GET

Successful JWKS Response
A successful response MUST use the 200 OK HTTP status code and return a JSON object

using the application/json content type that contains a set of Claims as its members that are a
subset of the Metadata.

Response Body : The following parameters are passed in the Response Body-
1. keys- The value of the "keys" parameter is an array of JWK values.
i. kty- Identifies the cryptographic algorithm family used with the key. (RSA)
ii. use- Identifies the intended use of the public key. (sig)

iii. alg- ldentifies the algorithm intended for use with the key.(RS256)
iv. n- Modulus of the public key.
v. e- Exponent of the public key

Sample Successful Response :-
{

"keys": [
{
"kty": "RSA",
"use": "sig",
"alg": "RSA",

"n": <Public_Key_Modulus>,
"e": <Public_Key_Exponent>

JWKS Error Response
An error response uses the 404 Not Found HTTP status code value.

28

Userinfo Endpoint

The UserInfo Endpoint is an OAuth 2.0 Protected Resource that returns Claims about the
authenticated End-User.

To obtain the requested Claims about the End-User, the Client makes a request to the UserInfo
Endpoint using an Access Token obtained through OpenID Connect Authentication. These Claims
are normally represented by a JSON object that contains a collection of name and value pairs for the
Claims.

The Userinfo Endpoint MUST accept Access Tokens as Bearer tokens.

Userinfo Request

An OpenlID Provider Userinfo endpoint MUST be queried using an HTTP GET request.

Endpoint: /identity/userinfo

Method: GET

Header: Authorization: Bearer <id_token>

Permission Required: 1. openid (Must) 2. Profile/Email

Successful UserInfo Response

A successful response MUST use the 200 OK HTTP status code and return a JSON object
using the application/json content type that contains a set of Claims about the Authenticated End-
User.

Response Body:

1. With Both Profile and Email Scopes in the access_token

The following parameters are passed in the Response Body-
a. sub: The account_id of the end user.

name: Full_Name of the end user.

given_name: First_name of the end user

family_name: Last_name of the end user.

middle_name: Middle_name of the end user.

preferred _username: anva_username

email: email of the end User

email_verified: true, as Anva Always validate the email_address before User

Account Creation

i. updated_at: last time the end user account is updated.

SQ "~ 0 Qoo

Sample Response:
{

"sub": "account_id_of End_user",

29

"name": "full_name",

"given_name": "first_name",

"family_name": "last_name",

"middle_name": "middle_name",

"preferred_username": "anva_username",

"email": "email_of _the _end_user",

"email_verified": true,

"updated_at": "last_time_end_user_updated"

With Profile Scope Only in the access_token

The following parameters are passed in the Response Body-

a.

Q@ "0 ao0oc

sub: The account_id of the end user.

name: Full_Name of the end user.

given_name: First_name of the end user
family_name: Last_name of the end user.
middle_name: middle_name
preffered_username: anva_username

updated_at: last time the end user account is updated.

Sample Response:

{

"sub": "account_id_of End_user",

"name”: "full_name",

"given_name": "first_name",

"family_name”: "last_name",

"middle_name": "middle_name",

"preferred_username": "anva_username”,

"updated_at": "last_time_end_user_updated"

With Email Scope Only in the access_token
The following parameters are passed in the Response Body-

a.
b.
C.

sub: The account_id of the end user.

email: email of the end User

email_verified: true, as Anva Always validates the email_address before User
Account Creation.

updated_at: last time the end user account is updated.

Sample Response:

{

"sub “: "account_id_of End_user",

30

"email": "email_of _the _end_user",
"email_verified": true,

"updated_at": "last_time_end_user_updated"

Userinfo Error Response
An error response uses the 404 Not Found HTTP status code value.

error errorCode error_Description

HTTP/1.1 401 Unauthorized WWW-Authenticate: error="invalid_token", error_description="The
Access Token expired

invalid_request 400 The request is missing a required parameter, includes
(Bad Request) an unsupported parameter or parameter value, repeats
the same parameter, uses more than one method for
including an access token, or is otherwise malformed.

invalid_token 401 The access token provided is expired, revoked,
(Unauthorized) = malformed, or invalid for other reasons.

insufficient_scope = 403 The request requires higher privileges than provided by
(Forbidden) the access token.

31

JWT Token Signing
The JWT token is signed using a private key.

The signature can be verified by using the corresponding public key. The private key is unique
to each domain (.live, .me)

To verify the signature, just use the key from the keys array of the jwks uri response, which has
the use value as “sig”.

32

